CAET 2024: Mathematics Paper Code A

SECTION 1 Multiple Choice Question (MCQ)

- This section contains **TEN (10)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, darken the bubble corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If **ONLY** the bubble corresponding to the correct option is darkened. Zero Marks : 0 If none of the bubble is darkened (i.e., the question is unanswered).

Negative Marks: -0.75 In all other cases.

Q.1 The value of the sum

$$\sum_{n=1}^{2024} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

is

- (A) 24
- (B) 45
- (C) 20
- (D) 44

Q.2 For which one of the following values of k, the equation

$$\cos\left(\frac{k\pi}{7}\right) = \cos\left(\frac{6\pi}{7}\right)$$

is satisfied?

- (A) 9
- (B) 5
- (C) 8
- (D) 4

Q.3 For which one of the following values of p, does the following inequality hold for all $x \ge 0$?

$$(1+x)^p \le 1 + x^p$$

- (A) $p = \frac{3}{2}$
- (B) $p = \frac{1}{2}$
- (C) p = 2
- (D) p = 4

Q.4 Let $f: \mathbb{R} \to \mathbb{R}$ be a two times differentiable function such that $f''(x) \ge 0$ for every $x \in \mathbb{R}$ and f'(0) > 0, where f' and f'' denote the first and the second order derivatives of f, respectively. If $g(x) = f(e^x)$, then

- (A) g''(x) > 0 for all $x \in \mathbb{R}$.
- (B) g''(x) = 0 for some $x \in \mathbb{R}$.
- (C) g''(x) < 0 for all $x \in \mathbb{R}$.
- (D) There exist x_1 and x_2 in \mathbb{R} such that $g''(x_1) < 0$ and $g''(x_2) > 0$.

- The number of possible 3×3 matrices with entries from the set $\{0, 1\}$ is Q.5
 - (A) 8
- (B) 18
- (C) 512
- (D) 81
- Q.6 The value of θ in the interval $\left[0, \frac{\pi}{2}\right]$ satisfying $1 + \cos \theta + \cos^2 \theta + \cos^3 \theta + \cdots = 4 + 2\sqrt{3}$ is
 - (A) $\frac{\pi}{2}$
- (B) $\frac{\pi}{2}$
- (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$
- Q.7 The number of one-one (injective) functions from the set $A = \{-1, 0, 1\}$ to the set $B = \{1, 2, 3, 4\}$ is
 - (A) 12
- (B) 81
- (C) 64
- (D) 24
- Q.8 A heap of sand is in the form of a cone whose height is 9 meters and it contains 432 π cubic meters of sand. The minimum area, in square meters, of the canvas required to cover the heap is
 - (A) $12\sqrt{63} \pi$
- (B) 324π
- (C) 180π
- (D) 192π
- Let z_1 and z_2 be complex numbers such that $i(z_1 z_2)$ and $z_1 + z_2$ are both real numbers, where Q.9 $i^2 = -1$. Which one of the following statements is true?

- (A) $z_1 = \overline{z_2}$ (B) $z_1 = z_2$ (C) $z_1 = i \overline{z_2}$ (D) $z_1 = -\overline{z_2}$
- O.10 For a real number x, let [x] denote the greatest integer less than or equal to x. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{([x^2] + [x^2 - 1])\sin^3 x}{x^3} & \text{if } x \neq 0, \\ k & \text{if } x = 0. \end{cases}$$

Then the value of *k* for which *f* is continuous at 0 is

- (A) 2
- (B) -1
- (C) 0
- (D) 1

SECTION 2 SDI

- This section contains **TEN (10)** questions.
- The answer to each question is a **SINGLE DIGIT NON-NEGATIVE INTEGER (SDI)**.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the bubble corresponding to the correct answer is darkened.

Zero Marks : 0 In all other cases.

- Q.11 Consider the 3 × 3 matrices $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Then the trace of the matrix $(A^3 6I)$ is _____
- Q.12 Let S be the area of the region in the first quadrant enclosed by the three lines x = 0, y = 0, x = 2, and the graph of the function

$$f(x) = \begin{cases} 2 & \text{if } 0 \le x \le 1, \\ \frac{2}{x^2} & \text{if } x > 1. \end{cases}$$

Then the value of *S* is _____

Q.13 Let

$$f(x) = \int_{-1}^{x} t|t|dt.$$

Then the value of 3f(2) is

- Q.14 Out of a group of 6 girls and 4 boys, a team of three is formed at random. Let *p* be the probability that the team consists of 2 girls and 1 boy. Then the value of 4*p* is _____
- Q.15 While entering data consisting of 10 numbers, a person makes a mistake of entering a two-digit number in the reverse order. In doing so the mean of the data decreases by 1.8. Then the absolute value of the difference of the digits of the two-digit number is _____
- Q.16 The number of values of θ in the interval $\left[0, \frac{\pi}{2}\right]$ satisfying the equation

$$\sin 2\theta - \cos 2\theta = 1 + \sin \theta - \cos \theta$$

is

- Q.17 For a complex number z, let Re(z) denote its real part. If z_1 and z_2 are the non-real roots of the equation $(z-1)^3-1=0$, then the value of $Re(z_1)+Re(z_2)$ is _____
- Q.18 The value of m for which the points A = (-3, 1, -1), B = (1, m, 1), and C = (-1, 2, 0) are collinear is
- Q.19 A boy of height 1.2 meters walks at a rate of 28 meters per minute away from a lamp which is 4 meters above the ground. If k meters per minute is the rate at which the length of the shadow of the boy is increasing, then the value of $\frac{k}{4}$ is _____
- Q.20 The number of real solutions of the equation

$$\sqrt{x^2 - 1} \left(x^2 - 2x + \frac{3}{4} \right) = 0$$

is _____

SECTION 3: Paragraph based MCQ

- This section contains FIVE (05) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

: +3 If **ONLY** the bubble corresponding to the correct answer is darkened.

If none of the bubble is darkened (i.e., the question is unanswered). Zero Marks

Negative Marks : -0.75 In all other cases.

PARAGRAPH I

Consider the triangle $\triangle ABC$ with sides AB, BC, CA in the ratio $1:r:r^2$ for some r>0. Suppose that the angle $\angle BCA = \alpha$ and the angle $\angle ABC = 2\alpha$.

Which one of the following statements is true? Q.21

(A)
$$r^2 = \cos \alpha$$

(B)
$$r^2 = \sin \alpha$$

(C)
$$r^2 = 2\cos\alpha$$

(D)
$$r^2 = \cos 2\alpha$$

PARAGRAPH I

Consider the triangle $\triangle ABC$ with sides AB, BC, CA in the ratio $1:r:r^2$ for some r>0. Suppose that the angle $\angle BCA = \alpha$ and the angle $\angle ABC = 2\alpha$.

Q.22 Which one of the following statements is true?

(A)
$$0 < \alpha < \frac{\pi}{6}$$

(B)
$$\frac{\pi}{5} < \alpha < \frac{\pi}{3}$$

(C)
$$\frac{\pi}{6} < \alpha < \frac{\pi}{5}$$

(A)
$$0 < \alpha < \frac{\pi}{6}$$
 (B) $\frac{\pi}{5} < \alpha < \frac{\pi}{3}$ (C) $\frac{\pi}{6} < \alpha < \frac{\pi}{5}$ (D) $\frac{\pi}{3} < \alpha < \frac{\pi}{2}$

PARAGRAPH II

A fair coin is tossed three times. Let E_1 be the event that exactly 2 heads appear, E_2 be the event that exactly 1 head appears, and E_3 be the event that at least 1 head appears.

Q.23 The conditional probability $P(E_1|E_3)$ is

(A)
$$\frac{3}{8}$$

(B)
$$\frac{3}{7}$$

(C)
$$\frac{4}{7}$$

(D)
$$\frac{5}{8}$$

PARAGRAPH II

A fair coin is tossed three times. Let E_1 be the event that exactly 2 heads appear, E_2 be the event that exactly 1 head appears, and E_3 be the event that at least 1 head appears.

Q.24 The conditional probability $P(E_2|E_3)$ is

- (A) $\frac{3}{7}$
- (B) $\frac{3}{8}$
- (C) $\frac{4}{7}$
- (D) $\frac{5}{8}$

PARAGRAPH III

Let L be the normal to the parabola $y^2 = 16x$ at the point (1,4) on the parabola.

Q.25 The x-intercept of the line L is

- (A) $\frac{3}{2}$
- (B) 9
- (C) 7

(D) $\frac{7}{2}$

PARAGRAPH III

Let L be the normal to the parabola $y^2 = 16x$ at the point (1,4) on the parabola.

Q.26 The *y*-intercept of the line *L* is

(A) $\frac{3}{2}$

(B) 9

- (C) 7
- (D) $\frac{9}{2}$

PARAGRAPH IV

Let \vec{u} and \vec{v} be vectors such that $|\vec{u}| = 1$, $|\vec{v}| = 2|\vec{u}|$, and \vec{u} is perpendicular to $\vec{u} + \vec{v}$. Let \vec{w} be a vector perpendicular to both \vec{u} and \vec{v} such that $\vec{w} \cdot (\vec{u} \times \vec{v}) = 6$.

Q.27 Then the angle between \vec{u} and \vec{v} is

- (A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$
- (C) $\frac{3\pi}{4}$
- (D) $\frac{5\pi}{6}$

CAET 2024: Mathematics Paper Code A

PARAGRAPH IV

Let \vec{u} and \vec{v} be vectors such that $|\vec{u}| = 1$, $|\vec{v}| = 2|\vec{u}|$, and \vec{u} is perpendicular to $\vec{u} + \vec{v}$. Let \vec{w} be a vector perpendicular to both \vec{u} and \vec{v} such that $\vec{w} \cdot (\vec{u} \times \vec{v}) = 6$.

- Q.28 Which one of the following statements is true?
 - (A) $|\vec{w}| = 2\sqrt{3}$
 - (B) \vec{w} is perpendicular to $\vec{u} \times \vec{v}$
 - (C) \vec{w} is parallel to $\vec{u} + \vec{v}$
 - (D) $|\vec{w}| = \frac{\sqrt{3}}{2}$

PARAGRAPH V

Let $g(x) = x + \frac{1}{x}$ for $x \in \mathbb{R} \setminus \{0\}$, and let Range(g) denote the range of the function g. Suppose

 $f: Range(g) \to \mathbb{R}$ is defined by

$$f(g(x)) = x^2 + \frac{1}{x^2} \cdot$$

- Q.29 The domain of the function f is
 - (A) [-2, 2]

(B) $(-\infty, -2] \cup [2, \infty)$

(C) $[2, \infty)$

(D) $(-\infty, -2]$

PARAGRAPH V

Let $g(x) = x + \frac{1}{x}$ for $x \in \mathbb{R} \setminus \{0\}$, and let Range(g) denote the range of the function g. Suppose

 $f: Range(g) \to \mathbb{R}$ is defined by

$$f(g(x)) = x^2 + \frac{1}{x^2} \cdot$$

- Q.30 Which one of the following statements is true?
 - (A) g is one-one, but $f \circ g$ is not one-one.
 - (B) There exists $x \neq 0$ such that f(g(x)) = 1.
 - (C) For any real number $\alpha \ge 2$, there exists $x \in \mathbb{R}$ satisfying $f(g(x)) = \alpha$.
 - (D) $Range(f \circ g) = Range(g)$.

CAET 2024: Mathematics Paper Code A